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Ideal vitrification, barrier hopping, and jamming in fluids of modestly anisotropic hard objects
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Our recent theory for the glassy dynamics of fluids and suspensions of hard nonspherical objects is applied
to several modestly anisotropic shapes. The role of bond length and aspect ratio is studied for diatomics,
triatomics, and spherocylinders. As spherical symmetry is broken the ideal kinetic glass transition volume
fraction of all objects increases linearly with aspect ratio with the same slope, in surprising agreement with the
jamming phase diagram of hard granular ellipsoids. The ideal glass boundary of all shapes is a nonmonotonic
function of aspect ratio which is also in qualitative accord with the jamming behavior of spherocylinders and
ellipsoids. The maximum glass volume fraction shifts to higher values, and larger aspect ratios, as the object
becomes smoother. Suggestions for why the nonequilibrium jamming and kinetic ideal glass formation (dy-
namical crossover) boundaries are similar are advanced. Beyond the ideal glass volume fraction the nonequi-
librium free energy acquires a localization well and entropic barrier. Although its form is highly nonuniversal,
if different shapes are compared at constant barrier height then a good collapse is found. Collapse of the
volume fraction dependence of the barrier height for different shapes is also predicted for modest shape
anisotropy, but increasingly fails as the aspect ratio exceeds 2. For a given volume fraction the mean barrier
hopping times are nonmonotonic functions of aspect ratio. The functional form of this dependence, and order
of magnitude variation with aspect ratio, is distinct for each object.
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I. INTRODUCTION

The glassy dynamics of fluids and suspensions of hard
nonspherical objects is of significant experimental and theo-
retical interest in both molecular [1] and colloid [2] science.
The first principles ideal mode coupling theory (MCT) [3]
has been extended to hard diatomic molecules at the site
level [4] and to ellipsoids of revolution at the center of mass
and Euler angle level [5]. Interesting predictions have been
made, including a nonmonotonic dependence of the ideal
glass volume fraction and diffusion constant on particle
shape which is supported by computer simulations [6,7].
However, MCT predicts a kinetic transition to a fully noner-
godic solid state which is not realized in practice due to
ergodicity restoring activated barrier hopping processes. This
aspect has motivated us and our collaborators to propose a
stochastic nonlinear Langevin equation theory [8,9] that ad-
dresses barrier formation and activated transport, including
dynamic non-Gaussian fluctuation effects that are poorly ac-
counted for by the standard ideal MCT [10]. Theories for
hard sphere colloidal suspensions and fluids [8,10,11], hard
diatomics [12], colloidal gels [13,14], and polymer melts
[15-17] and glasses [18—20] have been developed and exten-
sively confronted with experiment and computer simulation.

The focus of this paper is to extend our recent theory of
hard diatomics [ 12] to several modestly anisotropic shapes of
both a discrete site and continuous geometrical nature. Pos-
sible connections between ideal glass transitions and the
nonthermal jamming of granular objects are also explored.
Remarkable similarities between the nonmonotonic depen-
dence of the jamming [21-23] and ideal kinetic glass bound-
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aries on particle aspect ratio have been discovered, and ideas
for their physical origin are presented.

Our approach to describing the slow dynamics of non-
spherical objects is based on a dynamical preaveraging of
orientational degrees of freedom resulting in a center-of-
mass description of soft repulsive particles [12]. Here we
show this approach can be alternatively motivated as a re-
duced description at the site level which suggests a real space
collision perspective of the theory. The latter has been exten-
sively developed for hard spheres based on an analytic “ul-
tralocal limit” of the barrier hopping theory [24].

We study modestly anisotropic hard objects that do not
form liquid crystals: two-site diatomics and three-site tri-
atomics of variable bond lengths and spherocylinders (Fig.
1). A primary goal is to disentangle the effect of nonspheric-
ity as quantified by an aspect ratio from smaller scale geo-
metric features (e.g., particle smoothness or surface corruga-
tion). The diatomic and spherocylinder (triatomic) are
characterized by two (three) length scales. The dynamical
theory is recalled in Sec. II and pair correlation function and
structure factor calculations are presented. Insights concern-
ing the physical content of the approach are given in Sec. III.
Section IV presents the naive MCT glass boundaries which
are contrasted in Sec. V with the jamming phase diagrams of
spherocylinders and ellipsoids. Section VI studies the object
shape dependent localization length, entropic barrier, and
mean hopping time, and conclusions are drawn in Sec. VIIL.

II. THEORY

The present work employs the theoretical approach of
Ref. [12]. Here we briefly recall the key prior results.

A. Structural correlations

Consider an arbitrarily shaped rigid object composed of N
spherical interaction sites [25,26] of the same diameter (D)
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FIG. 1. Diatomic, triatomic, and spherocylinder. L/D is the
overall aspect ratio and the bond length between neighboring sites
is 1.

which are either rigorously symmetry equivalent (e.g.,
homonuclear diatomic) or taken to be approximately equiva-
lent (e.g., a site-averaged description of a triatomic). Diatom-
ics and triatomics are characterized by a bond length / and an
overall length-to-diameter (aspect) ratio L/D. As described
previously [27], a spherocylinder is modeled in the site rep-
resentation as a continuous limit of N sites of diameter D and
bond length [ where N—, [—0, and NI=L-D. The inter-
molecular site-site pair correlation functions are computed
based on the reference interaction site model (RISM) theory
[25]. Under the site equivalency simplification RISM theory
consists of a single scalar integral equation which in Fourier
transform space is given by [25,26]

hss(k) = wss(k)css(k)wss(k) + pswsx(k)css(k)hsx(k) . (1)

Here p,=Nn/V=Np is the site number density, n the number
of particles in a volume V, p the molecular number density,
hg (k) is the Fourier transform of the intermolecular site-site
total correlation function hg(r)=g(r—1), Cy(r) is the inter-
molecular site-site direct correlation function, and w (k) is
the intramolecular structure factor

N
wu(k) =N X wa(k), ()

a,y=1

where ®,,(k) is Fourier transform of the probability distri-
bution function for sites « and vy. For hard core interactions
the site-site Percus-Yevick (PY) closure is [25,28]

Cyu(r)=0, r>D. (3)

The site-site total structure factor that quantifies collective
density fluctuations is

1
ws_.vl (k) - vaW(k) '

The system is dynamically described at the center-of-mass
(CM) level. The CM and site level total structure factors are

Sss(k) = wy (k) + pshy(k) = (4)
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related by adopting the “rigid particle” approximation [29]
discussed in depth previously [12],

Sss(k) = wss(k)SCM(k)- (5)

At the CM level the Ornstein-Zernike relation of an atomic
liquid applies [28],

1
Scu(k) =1+ phey(k) = 1= pCon®)” (6)
Comparing Egs. (5) and (6) yields
CCM(k) = Nwss(k) Css(k) > (7)
N
hCM(k) = mhss(k)7 (8)

which are equivalent statements of the rigid particle map-
ping. For k— 0 one has

SSS
Scmlk=0) = Sy 0= pkpThr= N’O’ )

where k; is the isothermal compressibility [28].

The intramolecular structure factors of a rigid diatomic or
triatomic can be trivially written down [12,25] and are nor-
malized such that w,(k=0)=N. For a continuous spherocyl-
inder the intramolecular structure factor is a line, which in
the “form factor” representation [wy(k=0)=1] is given by
the well-known expression [30]

Si(gL) 4sin2(qL/2)
qL (gL)?

where Si(x)= [§dyy~' sin(y). The rewriting of the RISM
equation for an object composed of a continuous distribution
of sites of diameter D is given elsewhere [27].

wg(k) =2 , (10)

B. Naive MCT and activated hopping dynamics theory

The central dynamic order parameter is the scalar dis-
placement of the center of mass from its initial position, r(z),
which obeys a closed nonlinear stochastic Langevin equation
of motion [9]. In the overdamped limit the Langevin equa-
tion is given by [8,9]

ar(t) _ OF y((r(1))
a ar(t)

+ of (1), (1)

S

where {¢=kpT/Dy is a short time friction constant and the
random thermal force satisfies {5f(0) 5f(¢))=2kzT{;8(t). The
key quantity is the nonequilibrium or effective free energy,
Fo(r(1)), which describes within a local equilibrium dy-
namic density functional framework the effect of surround-
ing particles on the tagged colloid dynamics. In terms of the
CM variables and in units of k5T it is given by [8,9]

Feff(r) = Fideul + Fexcess
dk  pCg(k)Scu(k)

=-3 ln(r) + (277)3 1+ Saju(k)

2.2
Xexp{— ]%(1+SE}V,(1<))}. (12)
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Minimization of Eq. (12) with respect to r, or solution of Eq.
(11) in the absence of noise, or solving an approximate
Gaussian theory for the mean square displacement (MSD),
all yield [9] the naive MCT self-consistent equation (with a
de Gennes narrowing correction) for the long time limit of
the MSD or localization length ry,. [8,31],

1 [ dk -
Fioe = 9 J )3 szCZCM(k)SCM(k)e_(kzrlz”C/@[l+SC}”(k)]-

Q2w
(13)

The emergence of the first noninfinite solution of Eq. (13) for
71, defines the ideal glass transition volume fraction, ¢,.. It
signals a qualitative change in the nonequilibrium free en-
ergy to a form characterized by a localization well and bar-
rier, and thus a crossover to activated dynamics. The mean
first passage or barrier hopping time follows in the high fric-
tion overdamped (diffusive barrier crossing) limit from
Kramers theory [8,32]

2ar

eFB/kBT’ (14)

SR

KoK
where 7,=D?{,/kyT for hard spheres, {; is the short time
friction constant, F'g the barrier height, and EO and K g are the

absolute magnitudes of the well and barrier harmonic curva-
tures in units of kzT/D?, respectively.

C. Real and reciprocal space structure

Examples of the CM intermolecular pair correlation func-
tion for triatomics at a fixed volume fraction (the hard sphere
naive MCT glass transition) and various aspect ratios are
shown in Fig. 2(a). The contact value trends at the site and
CM levels are qualitatively the same. The corresponding CM
structure factors are shown in Fig. 2(b). All features on all
length scales are nonmonotonic functions of aspect ratio.
This includes Scy(k=0)= S, )y which quantifies molecular
number density fluctuations, the intensity of the wide angle
peak that quantifies the coherence of local cage order,
Scp(k) =S¢y, and its corresponding length scale 27/k".
This nonmonotonic behavior reflects enhanced packing dis-
order of objects characterized by three different local length
scales (D,l,L) when L/D is close to unity. The inset dem-
onstrates the nonmonotonic variations are property (length
scale) specific. These structural features play the key role in
quantifying cage constraints and glassy dynamics.

III. VERTEX, FORCES, AND COLLISIONS
A. Vertex

The central input to the dynamical theory is a length scale
resolved “vertex,”

Veu(k) = k*pCepy (k) S cay(k) . (15)

This quantity represents a Fourier-resolved effective total
mean square force on the object CM including the surface
area integration factor (k?). It enters the naive MCT, Eq.
(13), and effective force (derivative of the nonequilibrium
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FIG. 2. (Color online) (a) CM-CM intermolecular pair correla-
tion functions of triatomic fluids as a function of scaled separation
for a volume fraction of ¢=0.432. Aspect ratios are L/D=1 (solid),
1.5 (dashed), 2 (dot-dashed) and 3 (dot-dot-dashed). The inset
shows the contact value at the CM level [open circles, defined as
gem(r=D)] and at the site-site level (solid circles) as a function of
aspect ratio L/D. The curves are guides to the eye. (b) Analogous
collective structure factors as a function of scaled wave vector. The
inset shows the k=0 value or dimensionless compressibility (open
squares, left vertical axis) and the cage peak intensity (solid
squares, right vertical axis) as a function of aspect ratio L/D.

free energy) in Eq. (11). As discussed previously [12,24], the
vertex amplitude approaches a constant at large wave vec-
tors. Hence, the r dependence of F,4(r), and the ry,. depen-
dence of the naive MCT self-consistent equation (13), are
significantly influenced by large wave vector contributions.
This feature has motivated the formulation and detailed
analysis of an ultralocal analytic limit of the theory [24].

Figure 3 shows representative examples of the vertex. The
generic behavior for all shapes, aspect ratios, and (high) vol-
ume fractions of interest is an essentially constant amplitude
for wave vectors beyond the first two oscillations. The latter
occur on the length scales of roughly one (cage) and two site
diameters. Both naive MCT and its barrier hopping generali-
zation involve contributions from force fluctuations on all
scales via the integral over k in Egs. (12) and (13). The
Debye-Waller-like factors provide the natural high wave vec-
tor cutoff [12,24], and their corresponding length scale de-
fines the most relevant force fluctuations which are sensitive
to object shape and volume fraction.

B. Mean squared force on the center of mass

The underlying idea of our approach is to first map the
site level description of the hard object structural correlations

041506-3



GALINA YATSENKO AND KENNETH S. SCHWEIZER

3000 — —

2000 -

V(k)

1000 =

SRR

0 10 20 60

FIG. 3. (Color online) High wave vector limit of the CM vertex
(in units of 1/D) as a function of dimensionless wave vector at
volume fractions of 0.432 (lowest curve) and 0.62 (upper curve) for
a L/D=1.4 diatomic. The dashed curve is for a L/ D=2 diatomic at
$=0.432.

to a reduced center-of-mass level [12]. Then the dynamics is
assumed to be the same as a soft sphere fluid with structural
correlations given by the object shape and volume fraction
dependent structure factor and direct correlation function.
Here we point out an alternative interpretation which makes
contact with prior efforts to develop a MCT of entangled
polymer melts and dense solutions [33].

First rewrite Eq. (15) at the site level using Egs. (5)—(7),

Ven(k) = K*Np,Co (k) wyy (k) S, (k). (16)
One can define a matrix quantity that represents the contri-

bution due to forces exerted by the surroundings on sites i
and j of a tagged molecule,

N
Vik) =12 2 [kCy,y(K)1pS,(K)KC (1) ]w;(K),  (17)
m,l=1
N
Veuk) = X Vi (18)
ij=1

This form suggests the alternative view that our approach
computes the total mean square force on the CM of an object
within a site representation where the usual factorization of
multipoint correlations [3,33] to the two point level is
adopted. The idea of first constructing the CM correlations
from the site description, followed by a soft sphere mapping
for dynamics, need not be literally invoked. Moreover, Eq.
(16) is of the form of the zero time CM memory function,
N3, of the polymer MCT [33].

It is of interest to examine the constant vertex amplitude
at high wave vectors. The single molecule and collective
structure factors approach unity at large k, and the quantity
kC (k) is proportional to the Fourier transform of the effec-
tive site-site intermolecular force. An elementary conse-
quence of the RISM integral equation is that for hard sites
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FIG. 4. (Color online) Ideal glass transition volume fraction as a
function of aspect ratio for diatomic (circles), triatomic (stars), and
spherocylinder (triangles) fluids. The initial linear common form for
the diatomic and triatomic is indicated. The linear behavior is well
described by the function 0.18 L/D+0.25, which is accurate up to
L/D~1.22.

C,,(r) must have a jump discontinuity at contact of magni-
tude given by the site level contact value, g, (D) [24,25].
These facts then imply

N N
Vew(k) = 2 Vil =k 2 kCipp(0)] pLAC ()] or
—®i=1 m,l=1
~ K'Np,C,(k — ) « Np,g: (D). (19)

The limiting vertex amplitude is thus determined by the
number of sites and contact value squared which quantifies
an effective mean square repulsive force associated with sites
interacting via a renormalized force dC,,/dr. To the extent
the high wave vector part of the vertex dominates the nu-
merical predictions of the theory, Eq. (19) provides a real
space collision picture [24]. However, especially near an
ideal glass boundary, quantitative deviations of the theory
from its ultralocal limit due to vertex contributions on the
cage and larger scales, and also explicit intramolecular bond-
ing constraints [via w(k) in Eq. (6) and (7)], may be impor-
tant as discussed below.

IV. IDEAL VITRIFICATION OF TRIATOMICS AND
SPHEROCYLINDERS

A. Ideal glass boundary

The CM naive MCT glass transition boundaries for di-
atomics, triatomics, and spherocylinders are shown in Fig. 4.
As discussed previously [12] the diatomic result is in quali-
tative agreement with the more sophisticated full ideal MCT
studies [4,5]. Each ideal glass boundary displays a nonmono-
tonic variation with aspect ratio. As spherical symmetry is
initially broken the glass transition is suppressed, i.e., pushed
to higher volume fractions. The initial increase of the glass
volume fraction is linear in aspect ratio with a slope that
appears to be essentially identical for different shapes. This
common behavior seems remarkable given spherical geom-
etry is continuously broken for the discrete site models in
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contrast to the spherocylinder which is characterized by a
singular change of geometry [34,35]. Apparently at small
degrees of anisotropy differences in corrugation between the
three shapes are irrelevant.

At a system-specific degree of anisotropy the ideal glass
boundary goes through a maximum. The values of L/D and
volume fraction of this “most difficult to vitrify” state in-
creases from diatomics to triatomics to spherocylinders.
Hence, as the object becomes smoother, and has less “dead
volume” in the crevices defined by overlapping bond inter-
action sites, it is harder to vitrify based on the standard defi-
nition of fluid volume fraction. The glass volume fraction at
the “end point” geometry (L/D=2 or 3) also increases as the
object becomes smoother. Both the triatomic and spherocyl-
inder have ideal glass volume fractions at L/D=3 higher
than the hard sphere, in contrast to the glass boundary of the
diatomic system.

B. Origin of trends and controlling variables

An interesting question is whether a variable related to
packing and degree of fluid order can be identified which
correlates with the rich nonmonotonic and shape-specific be-
havior of the ideal glass boundaries. We have previously
shown for diatomics that the amplitude of the wide angle
peak of S(k), although a nonmonotonic function of L/D,
does not correlate well with the ideal glass boundary shape
within the naive MCT approach [12]. The same conclusion
applies to triatomics and spherocylinders [see inset of Fig.
2(b)]. However, Sy cy=3So, the dimensionless isothermal
compressibility, was empirically found to be nearly invariant
along the diatomic ideal glass boundary [12]. The vertex
calculations (Fig. 3) show a limiting high wave vector am-
plitude plateau for all systems and conditions examined, and
hence one can also ask whether its amplitude mimics the
shape of the ideal glass boundaries in Fig. 4.

Results for Sy, the vertex amplitude evaluated at the CM
cage peak and its high wave vector analog as a function of
aspect ratio are shown in Fig. 5(a) for the diatomic fluid at a
fixed volume fraction. The analogous results for the sphero-
cylinder and triatomic are given in Fig. 5(b). All these quan-
tities are nonmonotonic functions of aspect ratio. The behav-
ior of the vertex at high k and the cage peak are extremely
similar. At a detailed level, the vertex for the diatomic has a
maximum essentially exactly where its ideal glass volume
fraction peaks. Even subtle aspects of the shape-dependence
of the vertex amplitude are consistent with the glass bound-
ary, such as it being larger at L/D=2 than for hard spheres.
The story for the triatomic is essentially identical. For
spherocylinders the location of the vertex maximum is well
aligned with the maximum glass volume fraction aspect ra-
tio, and its value at L/D=3 is consistent with the glass
boundary occurring at a volume fraction significantly larger
than for hard spheres. All the qualitative trends described for
the high wave vector vertex amplitude also apply for the k
=0 quantity .

Thus, at a semiquantitative level the behavior of the ideal
glass boundaries follows directly from the nonmonotonic de-
pendence of S, or the vertex amplitudes on object anisotropy
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V(1)/V(L/D)

V(1)/V(L/D)

FIG. 5. (Color online) Ratio of the hard sphere to nonspherical
object vertex as a function of aspect ratio at ¢p=0.432. Results at k"
(stars) and the limiting high wave vector regime (kD=[30,60];
circles) are shown for the diatomic (a) and spherocylinder (b). Re-
sults for the triatomic and kD> 1 are also shown in panel (b) as the
dashed curve through the open circles. Triangles indicate So(L/D)
for the diatomics (a) and spherocylinder (b) normalized to unity for
L/D=1 (hard sphere).

thereby providing a simple physical interpretation. Figure 6
explores a more demanding test by asking whether there is a
“conserved variable” along the glass line. The vertex ampli-
tude along the ideal glass boundaries for all shapes overlaps
well. Moreover, for L/D < 1.4 the collapse is essentially ex-
act. However, the vertex amplitude varies significantly
(roughly linearly) with L/D. Additional factors play a role in
determining the aspect ratio dependence of the glass bound-
aries. The candidates are obvious: L/ D-dependent cage scale
correlations and explicit bonding constraints via wg,(k).

Figure 6 also demonstrates that the results for the real
space parameter of Eq. (19) are nearly identical to the trends
of the high wave vector vertex calculations as expected theo-
retically. We have also examined the ratio of the amplitude of
the vertex at high wave vectors to the quantity of Eq. (19)
(not plotted). It is remarkably flat beyond a rather low L/D
~ 1.3 for diatomics and triatomics, but increases linearly by
15% as the hard sphere state is approached.

Finally, Fig. 6 empirically demonstrates that S, is an ex-
cellent conserved variable along the glass boundary. The
constancy is nearly exact at lower aspect ratios where the
glass boundary is linear for all shapes. However, as empha-
sized in our prior diatomic work [12], and recent analytic
analysis for hard spheres [24], one should not conclude that
it is k~ 0 fluctuations that control the glassy physics. Rather
it is local structural correlations that matter and the proper
deduction is these force constraints have amplitude that cor-
relates with the dimensionless compressibility. Small devia-
tions from a constant S, do emerge as the glass boundary
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FIG. 6. (Color online) Values of three quantities along the ideal
glass boundary as a function of aspect ratio for the diatomic
(circles), triatomic (stars), and spherocylinder (triangles). The upper
panel shows the dimensionless compressibility at the CM level. The
middle panel is dimensionless parameter g?s(r=D)NpSD3 identified
in Eq. (19) as quantifying the high wave vector limit of the vertex.
The bottom panel shows the limiting high wave vector amplitude of
the vertex (units of 1/D). The smooth curves drawn through the
spherocylinder results are a guide to the eye.

goes through it maximum, especially for the triatomic. Ulti-
mately for the L/D > 1 long rod case the glass boundaries do
not occur in a dense fluid regime, and additional deviations
from a constant S, behavior occur as will be discussed else-
where.

V. COMPARISON TO THE JAMMING TRANSITION

The athermal mechanical jamming of hard oblate and pro-
late ellipsoids [21,22,34] and spherocylinders [23] has been
recently studied using computer simulation. A striking non-
monotonic dependence of the maximum random close pack-
ing volume fraction on shape anisotropy was discovered.
From a mathematical perspective ellipsoids of revolution and
spherocylinders are very different [34,35], however their
nonmonotonic jamming curves are quite similar. In the jam-
ming problem the key issue is the discontinuous emergence
of a true interparticle contact network. In contrast, the kinetic
ideal MCT glass transition of a fluid does not involve literal
contacts between particles (statistically these are of measure
zero) and is based on equilibrium structural input. Neverthe-
less, our present and prior results [12], and more advanced
ideal MCT calculations for hard diatomics [4] and ellipsoids
of revolution [5], have found nonmonotonic variations of the
glass boundary that look seductively similar to the jamming
phase diagrams.

To compare the results of Fig. 4 with the jamming studies
we have replotted them in Fig. 7 normalized to the critical
volume fraction of the reference hard sphere system. The
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FIG. 7. (Color online) Comparison of the ideal glass transition
boundary for diatomics (circles), triatomics (stars), and spherocyl-
inders (upward triangles) to the simulation determined jamming
boundary of granular prolate ellipsoids (downward triangles) [34]
based on two different normalizations to the hard sphere limit: a
ratio format (a) and a difference format (b). Jamming results for
hard spherocylinders [23] are indicated as solid diamonds.

representation of Fig. 7(a) is the format adopted in recent
jamming studies of granular ellipsoids [34]. The behavior of
prolate and oblate ellipsoids was found to be nearly identical
[34] and results for only the former are shown. Clearly the
normalized jamming phase diagram is not precisely the same
as the ideal glass transition boundaries. Given the different
shapes studied and questions asked this seems unavoidable.
But we find the similarities to be significant and surprising.
For example, the initial linear form of the boundaries, includ-
ing the precise slope, is essentially identical for the ideal
glass and ellipsoid jamming curves, and the location of the
maxima are also close. These similarities are even more ap-
parent in Fig. 7(b) which adopts an alternative normalization.
The ellipsoid curve is intermediate between the theoretical
analog for the triatomic and spherocylinder, which seems
natural from a geometrical perspective. Note the actual vol-
ume fractions for hard spheres are very different for the ideal
glass (0.432) and the random close packing (RCP) state
(~0.64). This makes any correspondence even more intrigu-
ing. Jamming results for hard spherocylinders [23] are also
shown in Fig. 7. Precise agreement with the analogous ideal
glass boundary does not occur, but all the qualitative features
again agree.

The question remains why there might be a connection
between the ideal glass boundary, which is controlled by
local packing considerations of an equilibrium compressible
fluid and the onset of dynamical localization, and the non-
equilibrium jamming transition defined by the emergence of
a contact network and static shear modulus. We do not have
a definite answer but feel that summarizing recent results and
offering speculations pertinent to this fascinating issue is
worthwhile. Mathematical analysis has recently yielded an
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understanding of why the jamming boundary is linear at very
small degrees of anisotropy [35]. However, we find essen-
tially identical behavior, and the underlying physics is un-
questionably different. The “excluded volume caging” per-
spective that MCT describes has been advanced by some
[23,36] for understanding the jamming transition. It seems
undoubtably correct for highly anisotropic objects such as
long rods, but when the anisotropy is modest has been dis-
puted (e.g., ellipsoids) [34]. From our viewpoint, the quali-
tative similarities of the ideal glass boundaries of diatomics,
triatomics, and spherocylinders, coupled with the common
behavior for the jamming of prolate and oblate ellipsoids and
spherocylinders, suggests the excluded volume driven caging
perspective has significant merit.

As suggested by Torquato [37], perhaps the similar non-
monotonic form of the jamming and ideal glass boundaries is
related to the fact that each boundary quantifies when a prop-
erty vanishes and another undergoes a discontinuous change.
For jamming it is the isothermal compressibility that van-
ishes and the number of interparticle contacts jumps from
zero to nonzero. At the ideal MCT glass transition there is a
“bifurcation” of the nonequilibrium free energy. If the ran-
dom noise required to escape over a barrier is ignored [9]
this corresponds to a true nonergodic transition where par-
ticle mobility goes to zero and the long time inverse local-
ization length (or Debye-Waller factor) jumps from zero to a
nonzero value. This interpretation of the ideal MCT glass
transition is attractive since granular materials are non-
Brownian and thermal fluctuations irrelevant by definition.
Interestingly, study of the random sequential adsorption
(RSA) transition in hard particles also shows a nonmono-
tonic dependence of the critical volume fraction on object
aspect ratio [34,38] that is qualitatively the same as the jam-
ming and ideal glass boundaries. In RSA what vanishes is the
probability for particle insertion which occurs at volume
fractions commensurate with the ideal glass boundaries and
far below RCP. Finally, we note that recent computational
and experimental studies have demonstrated striking simi-
larities in the caging dynamics of thermal fluids and the be-
havior of mechanically driven granular objects, including
fluctuation or dynamic heterogeneity aspects [39-41].

VI. TRANSIENT LOCALIZATION AND ACTIVATED
BARRIER HOPPING

We now consider beyond ideal MCT issues. Although
there are many interesting and experimentally relevant as-
pects [8,10,12,42] (e.g., displacement of maximum restoring
force, absolute yield stress, shear modulus, self-diffusion
constant, shear viscosity), we study just four topics: the form
of the nonequilibrium free energy, the (transient) localization
length, the entropic barrier, and the mean activated hopping
time.

A. Nonequilibrium free energy

Examples of the nonequilibrium free energy are shown in
Fig. 8. The volume fraction for each object shape is adjusted
to achieve a common barrier height of 5 k3z7. Based on this
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FIG. 8. Nonequilibrium free energy in units of the thermal en-
ergy as a function of normalized particle displacement for the three
shapes at a common aspect ratio (L/D=2) with volume fractions
adjusted so that the barrier height equals SkgT. The required volume
fractions are ¢=0.505 for the diatomic (solid curve), ¢=0.605 for
the triatomic (dashed curve), and ¢=0.677 for the spherocylinder
(dot-dashed curve). The triatomic and spherocylinder curves are
vertically and horizontally shifted to align their localization lengths
(in units of D) in order to demonstrate the high similarity for all
three geometrical shapes.

“calibration” the effective free energy curves are all very
similar and the localization lengths are essentially identical.
This conclusion is not sensitive to the precise value of the
barrier height chosen to make the comparison. The only sub-
stantive difference is a modest shift of the barrier location
outwards, and curvature softening, as the hard object be-
comes smoother. A theoretical basis for this simplicity has
been suggested [24].

B. Localization lengths

The (transient) localization length in units of the elemen-
tary excluded volume length scale, D, along the ideal glass
boundary is shown in Fig. 9. A remarkably good collapse is
found for the different shapes. The localization length in-
creases roughly linearly with aspect ratio, perhaps indicative
of r,,. being sensitive to the overall object size. If the volume
fraction in the ideal glass is held constant then the localiza-
tion length varies in a nonmonotonic manner with L/D (not
shown) which reflects the shape of the ideal glass boundary.

The inset of Fig. 9 presents the localization length as a
function of volume fraction for L/D=1.5 and 3 triatomics. A
roughly exponential decrease with volume fraction is pre-
dicted as found for other systems [8,12]. Moreover, the av-
erage slope is only weakly sensitive to object shape or aspect
ratio. Possible collapse of these curves based on the two
measures of distance from the ideal glass line previously
discussed [12], ¢—p¢ and (p/ pe)—1, was investigated. We
find the collapse is not very good for the former measure of
reduced volume fraction, but is quite good for the latter if a
small vertical shift is applied to account for an
L/D-dependent effective diameter (not plotted).

C. Entropic barrier

The magnitude of the « relaxation time is dominated by
the entropic barrier height. Figure 10 shows representative
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FIG. 9. (Color online) Localization length (in units of D) as a
function of aspect ratio along the ideal glass boundary for the di-
atomic (circles), triatomic (stars), and spherocylinder (triangles). A
linear fit to the spherocylinder results is shown. The inset presents
in a log-linear format the volume fraction dependent localization
length for the hard sphere (solid) and L/D=1.5 (dashed) and 3.0
(dot-dashed) triatomics.

results for its dependence on object shape and volume frac-
tion. The main panel demonstrates that at fixed aspect ratio
the volume fraction dependence for different objects is quite
similar. The inset shows results for the triatomic and several
aspect ratios. As expected, the barrier is a nonmonotonic
function of aspect ratio. We have previously shown [12] for
diatomics that the volume fraction dependence can be em-
pirically well described as a critical power law, Fgzoc(¢h
—¢c)?, where v=2 for all bond length to site diameter ra-
tios. The same behavior is found to work rather well for
barrier heights up to ~10 kT for triatomics and spherocyl-
inders, Fp=C(¢/p-—1)*, where x~19-2.0 and C
~40-60.

Figure 11 attempts a collapse of the barrier as a function
of volume fraction for all shapes and several aspects ratios.
For the modestly anisotropic L/D=1.5 case, the barriers of

15

FIG. 10. Barrier height as a function of volume fraction for the
diatomic (solid), triatomic (dashed), and spherocylinder (dot-
dashed) at a common aspect ratio of L/D=1.5. The inset shows the
barrier height as a function of volume fraction for a triatomic of
L/D=1 (solid), 1.5 (dashed), 2.0 (dot-dashed), 2.8 (dot-dot-dashed)
and 3.0 (large dots).
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FIG. 11. (Color online) Barrier heights as a function of a nor-
malized measure of the distance from the ideal glass boundary.
Results are shown for the hard sphere (solid curve), diatomic
(circles), triatomic (stars), and spherocylinder (triangles) for L/D
=1.5, and the triatomic (dashed) and spherocylinder (dash-dot) at
L/D=3.

all objects (including hard spheres) collapse based on a di-
mensionless volume fraction which quantifies the distance
from the ideal glass boundary. This collapse holds well up to
L/D~?2 (not shown), but with increasing aspect ratio devia-
tions emerge. The limiting L/D=3 case is also shown, and
the results neither overlap with their L/D=1.5 analogs, nor
do the triatomic and spherocylinder curves collapse. In the
representation of Fig. 11 the volume fraction dependence is
weaker at L/D=3, and weakest for the triatomic. This high-
lights the important role of the smoothness or corrugation of
the object in affecting packing and activated dynamics.

D. Mean hopping time and « relaxation

The mean barrier hopping time, which we identify with
the single particle « relaxation time [10], has been computed
based on Eq. (14). The nondimensionalizing elementary
short time scale, 7,=BD?{,, is in practice (weakly) shape
and volume fraction dependent via the short time friction
constant. Figure 12 shows results for the three shapes at two
high volume fractions: 0.57 (roughly the empirical experi-
mental kinetic glass transition volume fraction of hard
spheres) and 0.62. At aspect ratios close to unity the relax-
ation times for different shapes closely overlap since their
respective ideal glass boundaries superimpose almost per-
fectly (see Fig. 3). At larger aspect ratios a nonmonotonic
variation is found which is shape specific. For ¢=0.57 the
mean hopping time varies by 5 orders of magnitude for the
diatomic, 7 orders of magnitude for the triatomic, and only 2
orders of magnitude for the spherocylinder. At ¢=0.62 the
variations are larger of course, and the detailed shape of the
volume fraction dependences also change. In this case the
spherocylinder mean hopping time changes by roughly 4 or-
ders of magnitude. Given quantitative knowledge of the short
time scale, 7,, a kinetic glass transition can be defined as
when the hopping (@) time reaches an experimentally de-
fined threshold beyond which relaxation is unobservable.
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FIG. 12. (Color online) Mean barrier hopping time normalized
by the elementary short relaxation time, 7, as a function of aspect
ratio for the diatomic (circles), triatomic (stars), and spherocylinder
(triangles) at a volume fraction of ¢$=0.62. Analogous results for
$=0.57 are shown as smooth curves for the diatomic (solid), tri-
atomic (dashed), and spherocylinders (dot-dashed).

VII. SUMMARY AND DISCUSSION

Our theory for the ideal kinetic glass transition and acti-
vated barrier hopping dynamics of fluids of hard nonspheri-
cal objects [12] has been applied to several modestly aniso-
tropic shapes. The role of bond length, aspect ratio, and
degree of object smoothness has been established. For all
shapes studied the ideal glass boundary is a nonmonotonic
function of aspect ratio. As spherical symmetry is broken, the
glass volume fractions increase linearly with aspect ratio
with a slope that appears to be identical for the diatomic,
triatomic, and spherocylinder. This behavior, including the
quantitative value of the slope, is in remarkable agreement
with the jamming phase diagram of granular ellipsoids [34].
Each shape displays a maximum glass volume fraction
which occurs at larger values and aspect ratios as the object
becomes smoother. These ideal glass boundaries appear to
bracket the jamming curves of ellipsoids [34] and spherocyl-
inders [23]. Theoretical suggestions for why nonthermal jam-
ming and equilibrium kinetic ideal glass formation may be
related have been suggested. Surprisingly, the amplitude of
long wavelength density fluctuations is to a good approxima-
tion conserved along the ideal glass boundary of all shapes.
A master curve for the localization length in units of the
elementary excluded volume length is predicted with the pre-
cise value increasing linearly with aspect ratio.
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Beyond the ideal glass boundary the nonequilibrium free
energy acquires a localization well and barrier. Although its
form for different shapes and aspect ratios is highly nonuni-
versal at fixed volume fraction, if different shapes are com-
pared at constant entropic barrier height then a reasonably
good collapse is found. The barriers of each object grow
roughly quadratically with volume fraction as measured from
the ideal glass boundary. Collapse of the volume fraction
dependence of the barrier height is predicted for modest as-
pect ratios but increasingly fails as L/D>?2. At fixed volume
fraction the mean hopping times are nonmonotonic functions
of aspect ratio. The specific form of the dependence, and
order of magnitude variation, is distinct for each shape. Al-
though not explored in this paper, many other aspects can be
studied [12], including the role of object shape on transport
coefficients, shear modulus, yield stress, and dynamic heter-
ogeniety effects [10]. Some of our predictions should be
amenable to testing via computer simulation. Advances in
the synthesis of nonspherical colloids are proceeding rapidly
[2,43-46] and we anticipate will allow confrontation of the
theory with experiment in the near future.

Finally, a variety of additional systems and questions can
be addressed using our approach. Problems under present
study include long rigid rods and the relationship of the ideal
glass boundary to the nematic and jamming transition bound-
aries [47], thin disks in both the isotropic and discotic liquid
crystalline state [47], and hard compact (three-dimensional-
like) molecular colloids of variable size and shape [48], as
recently fabricated experimentally [2,43]. The present ap-
proach is not limited to hard objects. As done for spheres,
intermolecular attractions can be added within the site level
description to study the role of colloid shape on gelation and
its competition with vitrification [13], and activated barrier
hopping dynamics under both quiescent [14] and stressed
conditions [49,50].
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